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Abstract. In this article a treatment of a three-level atom interacting with two modes of light in a cavity
with arbitrary forms of nonlinearities of both the fields and the intensity-dependent atom-field coupling
is presented. A factorization of the initial density operator is assumed, with the privileged field modes
being in a pair-coherent state. We derive and illustrate an exact expression for the time evolution of the
density operator, by means of which we identify and numerically demonstrate the region of parameters
where significantly large entanglement can be obtained. We show that entanglement can be significantly
influenced by different kinds of nonlinearities. The nonlinear medium yields the superstructure of atomic
Rabi oscillation. We propose a generation of Bell-type states having a simple initial state preparation of
the present system.

PACS. 42.65.Sf Dynamics of nonlinear optical systems; optimal instabilities, optical chaos
and complexity, and optical spatio-temporal dynamics – 03.65.Ud Entanglement and quantum
nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ states, etc.) – 03.67.Hk Quantum communication

1 Introduction

Quantum entanglement has been studied intensely in re-
cent years due to its potential applications in quantum
communication and information processing [1]. Sources of-
fering a great variety of entangled states are required for
the implementation of many quantum communication and
computation protocols [2,3]. With quantum communica-
tion [4] in mind the choice of photon-states as qubits is
especially appropriate, since they can be easily transfered
over long distances. The standard source presently used in
the lab is parametric down conversion in a crystal [5,6].
It is a reliable source of entangled twin-photons but the
process is random and largely untailorable. Moreover, in
practice its capability of generating entanglement is lim-
ited to states comprising only two photons.

Recently Gilchrist et al. [7] and Munro [8] showed how
in a certain narrow regime, the pair-coherent state gives
quantum mechanical predictions that are in disagreement
with those of local hidden variable theories for a situation
involving continuous quadrature phase amplitude mea-
surements. This test could be achieved by binning the con-
tinuous position and momentum information into two cat-
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egories and using the binary results in the strong Clauser
Horne Bell inequality test [9]. The predicted violation was
small (less than 2%). Such results were highly idealized,
and assumed the preparation of a pair-coherent state as a
start. On the other hand, there exist situations in which
the transition between the upper and lower levels of an
atom is mediated by two photons if the energy separation
between the levels is close to twice the photon frequency.
This process and its multiphoton counterparts are impor-
tant because they can be used to study statistical prop-
erties of the optical field [10]. In this case a system with
more than two levels should be considered because a third
level is required to support the second resonance [11]. The
theory of the single-mode two-photon system has been de-
veloped [12]. An extended treatment of two-mode three-
level cavity quantum electrodynamics has been reported
in the long review [13]. On the other hand there is grow-
ing interest in nonlinear quantum dynamics [14]. However,
works dealing with the nonlinear quantum dynamics have
been limited to the two-level atom [14–16]. It is therefore
desirable to investigate the nonlinear interaction of the
three-level atom with the excited field on the two-photon
resonance transitions.

In a previous paper [17] it was supposed that the cav-
ity is filled with a nonlinear medium and a single-mode
cavity interacts with both the three-level atom and the
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nonlinear medium. It is one purpose of the present es-
say to extend the previously cited treatment to study the
problem of entanglement measure in terms of the quantum
field entropy of the reduced single-particle density matrix
for a system of a three-level bimodal field interacting
with a pair-coherent state taking into account arbitrary
forms of nonlinearities of both the field and the intensity-
dependent atom-field coupling. In this two-photon regime,
each atomic transition creates simultaneously one photon
in each mode, so that one expects a strong quantum cor-
relation between the modes. The material of this paper
is arranged as follows: in Section 2, we discuss the con-
struction and properties of the two-mode nonlinear coher-
ent states. Section 3 includes a description of the quan-
tum phase gate. In Section 4, we introduce the model and
write the expression for the reduced density operator. In
Section 5, we introduce the entanglement degree calcu-
lation when the nonlinearities effects are included. By a
numerical computation, we examine the influence of the
nonlinearities on the entanglement degree and the atomic
level occupation probabilities for a pair-coherent state in
Section 6. Finally, conclusions are presented in Section 7.

2 Nonlinear coherent state

The generalized annihilation (creation) operator associ-
ated with nonlinear coherent states are given by Â =
âf(N); Â† = f(N̂)â†, N̂ = â†â where f(N̂) is a rea-
sonably well behaved real function and â†(â) is the har-
monic oscillator creation (annihilation) operator. It can
be easily verified that Â†, Â and N̂ satisfy the follow-
ing nonlinear algebra: [N̂, Â] = −Â, [N̂, Â†] = Â†, and
[Â, Â†] = (N̂ +1)f2(N̂ +1)− N̂f2(N̂). Clearly the nature
of the nonlinear algebra depends on the choice of the non-
linearity function f(N̂). Nonlinear coherent states |α〉 are
then defined as right eigenstates of the generalized anni-
hilation operator Â,

Â|α〉 = α|α〉, (1)

where α is an arbitrary complex number. In analogy to
the definition of the one-mode nonlinear coherent states,
the two-mode nonlinear coherent state is defined as

âb̂f(N̂a, N̂b)|α, f, q〉 = α|α, f, q〉, (2)

where â and b̂ are boson annihilation operators; f(N̂a, N̂b)
is the function of the number operator N̂a = â†â and
N̂b = b̂†b̂; q is the photon number difference between two
modes of the field. The pair coherent state |ζ, q〉, is an
important correlated two-mode nonlinear coherent state,
if the initial state of the two-mode optical field is prepared
in the pair-coherent state defined as the eigenstate of pair
annihilation operators â1â2 for two modes [18],

â1â2|ζ, q〉 = ζ|ζ, q〉, (3)

where ζ is a complex number and q is the degeneracy
parameter, such that

(
â†1â1 − â†2â2

)
|ζ, q〉 = q|ζ, q〉, (4)

which implies that, whenever photons are either created
in pairs or destroyed in pairs, the difference in the num-
ber of photons remains constant. The parameter q will be
zero when pair creation starts from vacuum, i.e. the pair
coherent states are only a special case of the abovemen-
tioned two-mode nonlinear coherent states. Without loss
of generality, q can be assumed to be positive, where q,
which remains constant is the difference of the number
of two-mode photons. The pair coherent state takes the
following form,

|ζ, q〉 = Nq

∞∑
n=0

ζn√
n! (n+ q)!

|n+ q, n〉, (5)

where |n,m〉 is such that â†1â1|n,m〉 = n|n,m〉 and
â†2â2|n,m〉 = m|n,m〉, and the normalization constant Nq

is determined by the condition 〈ζ, q|ζ, q〉 = 1. We obtain

Nq = 1/

√√√√ ∞∑
n=0

|ζ|2n

n! (n+ q)!

=
{

(i|ζ|)−qJq(2i|ζ|)
}− 1

2

, (6)

where Jq(x) is Bessel’s function. The probability of finding
n photons in mode 2 and n+ q photons in mode 1 is

Pn = |〈n, n+ q|ζ, q〉|2 = N2
q

|ζ|2n

n! (n+ q)!
, (7)

which is sub-Poissonian. In addition to the sub-Poissonian
statistics, the pair coherent states also possess other non
classical features, such as the correlation in the num-
ber fluctuations, squeezing, and violations of Cauchy-
Schwartz inequalities. Many other features of the pair co-
herent state, including the possibility of its generation, are
investigated in reference [18].

3 Phase gate

For the convenience of the reader, we first briefly recapit-
ulate the relevant known facts about the phase-gate and
its relation to the quantum computations. The difficulty
of building a quantum computer was greatly diminished
when it was realized that a network of quantum phase
gates operating in the product space of two qubits, single
bit rotations, and single bit phase shift gates can consti-
tute a universal quantum computer [19,20]. The quantum
phase gate simply gives the product state of two qubits
a phase shift depending on the values of each qubit. In
other words, the quantum phase gate performs the oper-
ation |00〉, eiα|01〉, eiβ|10〉, eiγ |11〉, in the computational
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basis of the two qubits. Provided that α + β �= γ (mod
2π) a network of quantum phase gates supplemented with
single bit gates can mimic the operation of any other
unitary operator acting on the qubits. Recently an im-
plementation of a quantum phase gate has been demon-
strated [21] utilizing Rydberg states and a photon in a
microwave cavity. Here one can explain how a quantum
phase gate that operates in the product space of the po-
larizations of two photons can be constructed by using
the optical Kerr effect. The photons are made to inter-
act as they pass through a material with a third-order
nonlinear susceptibility. These Kerr materials are used for
a wide variety of optical applications. In the presence of
a superposition of electromagnetic waves at different fre-
quencies and/or in different directions, these materials are
used in four-wave mixing applications such as frequency
conversion, phase conjugation, real time holography, and
image correlation. In the presence of a wave at a single
frequency, the refractive index of such materials is inten-
sity dependent and gives rise to the phenomenon of self
focusing [22]. When a superposition of waves is present,
the optical Kerr effect produces an interaction in which
the intensity of one frequency component influences the
index of refraction of another frequency component. As
described by Mandel and Wolf in [23], this effect can be
used to perform quantum non-demolition and back-action
evading measurements, during which the intensity of one
frequency component can be used to control the phase
of another without altering the photon number of either
component. Thus without loss of photon number, the fre-
quency components can become entangled in a way that
lends itself well to quantum computations.

4 The model

We begin with the description of the system. We consider
here a three-level atom in Λ−configuration with unequally
spaced levels, coupled to a quantized multimode electro-
magnetic field in the rotating wave approximation in an
ideal cavity (Q = ∞). The transition frequencies from
the upper state |a〉 to the lower states |b〉 and |c〉 are ωab

and ωac, respectively. The transitions are connected by
electric-dipole moments µab and µac, whereas the transi-
tion |b〉 ←→ |c〉 is forbidden in the electric-dipole approxi-
mation. Also, possible forms of nonlinearities for both the
two-mode field and the intensity-dependent atom-fields
couplings in a perfect cavity are included. Furthermore, we
assume that the cavity modes interact with both the atom
and the nonlinear medium. However, a real cavity cannot
be ideal. But in reference [24] the influence of a cavity
with finite bandwidth at nonzero temperature was stud-
ied and it was shown that for new available experimental
values of Q = 2 × 1010 and the temperature T = 0.5 K
the effect of the bandwidth and the temperature are neg-
ligible until the time t ∼ 10−3 (λt = 30) from the start of
the interaction. We assume for simplicity the two-photon
resonance condition, but individual modes are allowed to
be detuned from the upper atomic level by an arbitrary
amount ∆. With these assumptions, the total interaction

Hamiltonian in the rotating wave approximation can be
written as (we adopt � = 1)

Ĥin = ∆|a〉〈a|+ �(â†1â1, â
†
2â2)

+λ1(â
†
1f1(â

†
1â1)|b〉〈a|+ f1(â

†
1â1)â1|a〉〈b|)

+λ2(â
†
2f2(â

†
2â2)|c〉〈a|+ f2(â

†
2â2)â2|a〉〈c|). (8)

We denote by âi and â†i , the annihilation and the creation
operators for the ith mode of the cavity field, respectively.
The detuning ∆ = ωab −Ω1 = ωac −Ω2, (ωij = ωi − ωj),
and the operators |i〉〈j|, (i, j = a, b, c) are the lowering
and rising operators between level i and j. Also, λ1 and
λ2 are the usual coupling constant corresponding to the
coupling constants between the field and the atom. fi(n̂i)
and �(n̂1, n̂2) are Hermitian operators functions of photon
number operators of the two modes, such that λif(ni) rep-
resents an arbitrary intensity-dependent atom-field cou-
pling, while �(n̂1, n̂2) denotes the two-mode fields non-
linearity which can model Kerr-like medium nonlinearity
as will be discussed later. A similar technique has been
demonstrated by Sinatra et al. in [25], in their experi-
ment the two fields are coupled through a gas of 87Rb
where the photons interact with a Λ−type three-level sys-
tem. A similar model has been considered earlier but for
�(â†1â1, â

†
2â2) = 0 [26]. If we assume that at time t = 0

the bimodal field-atom system is in a pure state, then
the initial density operator of system can be given by
ρ(0) = ρf (0) ⊗ ρa(0), where the initial bimodal field is
given by

ρf (0) =
∞∑

n1=0

∞∑
n2=0

bn1,n2bm1,m2 |n1, n2〉〈m1,m2|, (9)

with bn1,n2 = bn1bn2 , bni describes the amplitude of state
|ni〉 of the ith mode. The initial atomic density operator
is assumed as

ρa(0) = |a〉〈a|. (10)

At any time t > 0, the time evolution of the statistical
operator ρ̂(t) is given by

dρ̂(t)
dt

= − i
�
[Ĥ(t), ρ̂(t)]. (11)

For the initial condition equation (9), we identify a general
solution to equation (11), which is valid for any class of
nonlinearities of both the intensity-dependent atom-field
coupling and nonlinear medium. The time-dependent an-
alytical solution for the density matrix ρ̂(t) is given by

ρ̂ (t) =
∞∑

n=0

∞∑
m=0

[

1(n)
∗

1(m)|Ψ1(n)〉〈Ψ1(m)|

+
1(n)
∗
2(m)|Ψ1(n)〉〈Ψ2(m)|+ 
1(n)
∗

3(m)
×|Ψ1(n)〉〈Ψ3(m)|+ 
2(n)
∗

1(m)|Ψ2(n)〉〈Ψ1(m)|
+
2(n)
∗

2(m)|Ψ2(n)〉〈Ψ2(m)|+ 
2(n)
∗
3(m)|

×Ψ2(n)〉〈Ψ3(m)|+ 
3(n)
∗
1(m)|Ψ3(n)〉〈Ψ1(m)|

+
3(n)
∗
2(m)|Ψ3(n)〉〈Ψ2(m)|+ 
3(n)
∗

3(m)

×|Ψ3(n)〉〈Ψ3(m)|
]
, (12)
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where 
i(n) and |Ψi(n)〉 are given by



1(n)

2(n)

3(n)


 =


A(n, t)
B(n, t)
C(n, t)


 , (13)


 |Ψ1(n)〉
|Ψ2(n)〉
|Ψ3(n)〉


 =


 |n1 + 1, n2, b〉
|n1, n2, a〉
|n1, n2 + 1, c〉


 , (14)

with

A(n, t)
B(n, t)
C(n, t)


 =


 ξ11 ξ12 ξ13
ξ21 ξ22 ξ23
ξ31 ξ32 ξ33





 exp{iµ1t}

exp{iµ2t}
exp{iµ3t}


 . (15)

In equations (12–14), n refers to n1, n2 and m refers to
m1, m2. The quantities ξij , in the above equations are
given by

ξ1i = ξ3iM
−1
1 M−1

2

(
µ2

i − µi[�2 + �3] + �3�2 −M2
2

)
,

ξ2i
= −ξ3i

M−1
2 (µi + �3) ,

ξ3i
= (µik)−1(µil)−1M2bn1,n2 (µk + µl + �2 + �3) ,

(16)

where i �= k �= l, (µij = µi − µj). The coefficients µi (i =
1, 2, 3) are given by the following expressions

µ1 = −1
3

[
γ1 + 2

(√
γ2
1 − 3γ2

)
cos�

]
,

µ2 = −1
3

[
γ1 − (cos� +

√
3 sin�)

(√
γ2
1 − 3γ2

)]
,

µ3 = −1
3

[
γ1 − (cos� −√3 sin�)

(√
γ2
1 − 3γ2

)]
, (17)

where

� =
1
3

cos−1

(
9γ1γ2 − 2γ3

1 − 27γ3

2
√

(γ2
1 − 3γ2)3

)
, (18)

γ1 = �1 + �2 + �3,

γ2 = −
[
M2

1 +M2
2 −�1�2 −�2�3 −�1�3)

]
,

γ3 = �1�2�3 −M2
1�3 −M2

2�1,

Mi = λifi(ni)
√
ni + 1,

�1 = �(n1 + 1, n2),
�2 = ∆+ �(n1, n2),
�3 = �(n1, n2 + 1).

Having obtained the density matrix ρ̂(t) we are therefore
in a position to discuss the properties of the atom and
the field. Furthermore, from the form of the density ma-
trix ρ̂(t) we can gain valuable insights into the problem.
For example, from the solution (12) we find the atomic

occupation probabilities are given by

Pa =
∞∑

n1,n2=0

|A(n1, n2; t)|2,

Pb =
∞∑

n1,n2=0

|B(n1, n2; t)|2, (19)

Pc =
∞∑

n1,n2=0

|C(n1, n2; t)|2.

By using equation (5) and comparing it with equation (9),
we obtain n1 = n+q, n2 = n and we can express bn1,n2 as,

bn1,n2 = bn+q,n = Nq
|ζ|n√

n! (n+ q)!
δn1,n+qδn2,n. (20)

Employing the reduced field density operator given by
equation (12), we shall investigate the properties of the
entropy in the next section.

The experimental feasibility of this model involving
a two-mode high-Q cavity has been more or less tacitly
assumed by many authors [27]. It is worthwhile remark-
ing that investigating such models goes beyond an intrin-
sic theoretical interest because a new generation of high-
Q electromagnetic cavities, covering a wide wavelength
range, are today realizable [28]. In particular, the continu-
ous development of new and improved materials expected
to lead to fabrication of three-dimensional photonic band
gap systems passing few isolated high-Q resonant field
modes [29]. Such technological advances make the explo-
ration of novel quantum electrodynamics phenomena in
condensed matter systems quite attractive [30]. Intensity-
dependent models like our model might be of interest in
this context [31].

5 Degree of entanglement

The physical essence of entanglement consists in the ex-
istence of quantum correlations between the individual
parts of a composite system that have interacted once in
the past but are no longer interacting. Formally, these
correlations are caused by the combination of the super-
position principle in quantum mechanics with the tensor
product structure of the space of states [32]. In this paper,
we use the quantum field entropy as a measurement of the
degree of entanglement between the field and the atom of
the system under consideration. Quantum mechanically,
the entropy is defined as

S = −Tr{ρ ln ρ}, (21)

where ρ is the density operator for a given quantum sys-
tem and we have set Boltzmann’s constant k = 1. If ρ
describes a pure state, then S = 0, and if ρ describes
a mixed state, then S �= 0. Consider F and A that in-
teract with each other. How are the entropies of these
systems related to the entropy of the composite system
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that comprises them both? The answer to this question
was listed by the Araki-Lieb theorem [33]. Let SF and SA

denote the entropies of the two interacting systems and
let S denotes the entropy of the composite system. Araki
and Lieb showed that these entropies satisfy the “trian-
gle inequalities” |SA − SF | ≤ S ≤ SA + SF . Quantum
entropies are generally difficult to compute because they
involve the diagonalization of large (and, in many cases,
infinite dimensional) density matrices. Thus explicit illus-
trations of the inequalities |SA − SF | ≤ S ≤ SA + SF are
difficult to come by. Knight and co-workers [34] gave a
nice illustration of these inequalities in the context of the
Jaynes-Cummings model. The entropies of the atom and
the field, when treated as a separate system, are defined
through the corresponding reduced density operators by

SA(F ) = −TrA(F ){ρA(F ) ln ρA(F )}· (22)

The quantum dynamics described by the Hamiltonian (8)
leads to an entanglement between the field and the atom.
In this paper, we use the field entropy as a measurement
of the degree of entanglement between the field and the
atom of the system under consideration. In order to derive
a calculation formalism of the field entropy, we must ob-
tain the eigenvalues of the reduced field density operator.
By using equation (12) the reduced field density operator
ρ̂f (t) = Tratomρ̂ (t) in the following form

ρ̂f (t) =
∞∑

n=0

∞∑
m=0

[

1(n)
∗

1(m)|Θ1(n)〉〈Θ1(m)|

+
2(n)
∗
2(m)|Θ2(n)〉〈Θ2(m)|+ 
3(n)
∗

3(m)

|Θ3(n)〉〈Θ3(m)|
]
, (23)

where 

|Θ1(n)〉
|Θ2(n)〉
|Θ3(n)〉


 =



|n1 + 1, n2〉
|n1, n2〉
|n1, n2 + 1〉


 , (24)

one can write equation (23) in the following form

ρ̂f (t) = |C(t)〉〈C(t)| + |S(t)〉〈S(t)| + |R(t)〉〈R(t)|, (25)

where the bimodal field states |C(t)〉, |S(t)〉 and |R(t)〉 are
given by

|C(t)〉 =
∞∑

n1=0

∞∑
n2=0


1(n)|Θ1(n)〉,

|S(t)〉 =
∞∑

n1=0

∞∑
n2=0


2(n)|Θ2(n)〉,

|R(t)〉 =
∞∑

n1=0

∞∑
n2=0


3(n)|Θ3(n)〉· (26)

To calculate the various field eigenstates in a simple way,
we assume that the state equation can be written in the
following form

|ψf (t)〉 = γ1|C(t)〉+ γ2|S(t)〉+ γ3|R(t)〉. (27)

If we apply the density matrix given by equation (25) to
the state equation (27), we find that

ρ̂f (t)|ψf (t)〉 =
(
〈C(t)|C(t)〉 + 〈C(t)|S(t)〉γ2

γ1

+〈C(t)|R(t)〉γ3

γ1

)
γ1|C(t)〉

+
(
〈S(t)|C(t)〉γ1

γ2
+ 〈S(t)|S(t)〉

+〈S(t)|R(t)〉γ3

γ2

)
γ2|S(t)〉

+
(
〈R(t)|C(t)〉γ1

γ3
+ 〈R(t)|S(t)〉γ2

γ3

+〈R(t)|R(t)〉
)
γ3|R(t)〉· (28)

Consequently for |ψf (t)〉 to be an eigenstate of ρ̂f (t) for
the eigenvalue λf (t), we must have the relation

λf (t) = 〈C(t)|C(t)〉 + 〈C(t)|S(t)〉γ2

γ1
+ 〈C(t)|R(t)〉γ3

γ1

= 〈S(t)|S(t)〉 + 〈S(t)|C(t)〉γ1

γ2
+ 〈S(t)|R(t)〉γ3

γ2

= 〈R(t)|R(t)〉 + 〈R(t)|C(t)〉γ1

γ3
+ 〈R(t)|S(t)〉γ2

γ3
·

(29)

Then the eigenvalues of the density matrix of the field are
given by

λ
(1)
f (t) =

ϑ1

3
− 2

3

(√
ϑ2

1 − 3ϑ2

)
cos ε,

λ
(2)
f (t) =

ϑ1

3
+

1
3
(cos ε+

√
3 sin ε)

(√
ϑ2

1 − 3ϑ2

)
,

λ
(3)
f (t) =

ϑ1

3
+

1
3
(cos ε−

√
3 sin ε)

(√
ϑ2

1 − 3ϑ2

)
, (30)

where

ε =
1
3

arccos
(
Q

W

)
,

Q = 9ϑ1ϑ2 − 2ϑ3
1 − 27ϑ3,

W = 2
√

(ϑ2
1 − 3ϑ2)3, (31)

with

ϑ1 = −(〈C(t)|C(t)〉 + 〈S(t)|S(t)〉 + 〈R(t)|R(t)〉),
ϑ2 = 〈C(t)|C(t)〉〈R(t)|R(t)〉 + 〈C(t)|C(t)〉〈S(t)|S(t)〉

+〈S(t)|S(t)〉〈R(t)|R(t)〉 − |〈S(t)|R(t)〉|2
−|〈C(t)|S(t)〉|2 − |〈C(t)|R(t)〉|2,

ϑ3 = 〈C(t)|C(t)〉〈R(t)|R(t)〉〈S(t)|S(t)〉 + 〈C(t)|S(t)〉
×〈R(t)|C(t)〉〈S(t)|R(t)〉 − 〈C(t)|C(t)〉|〈S(t)|R(t)〉|2
−〈R(t)|R(t)〉|〈C(t)|S(t)〉|2
−〈S(t)|S(t)〉|〈R(t)|C(t)〉|2. (32)
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The field entropy Sf (t) may be expressed in terms of
the eigenvalues λ(i)

f (t) for the reduced field density op-
erator as,

Sf (t) = − ln
([
λ

(1)
f (t)

]λ
(1)
f (t)

×
[
λ

(2)
f (t)

]λ
(2)
f (t)

×
[
λ

(3)
f (t)

]λ
(3)
f (t)

)
. (33)

In the case of a disentangled pure joint state Sf (t) is zero,
and for maximally entangled states it gives ln 3. Since we
cannot obtain a simple analytical expression for the series
included in equation (33) (because of the higher dimen-
sionality of the problem), the numerical approach becomes
indispensable. In the following section, we shall present
our results obtained from a numerical solution of the evo-
lution equations (33) with emphasis on the effect of the
nonlinearities on the behavior of the system under consid-
eration.

6 Results and discussions

Given the impressive technological advances in several ex-
perimental areas of quantum optics, condensed matter,
atomic physics, etc., it is nowadays possible to realize a
system of two interacting degrees of freedom and watch
the time evolution of the corresponding entanglement pro-
cess [36]. It is therefore also of importance to understand
the entanglement process in simple Hamiltonian systems.
Hamiltonian systems with two degrees of freedom often
present a very rich dynamics, which in many cases is not
yet completely understood from a general point of view. In
particular, if the interaction is nonlinear the system may
present chaotic behavior in the classical limit. The con-
sequences of this fact to the quantum dynamics is yet an
unsettled issue. A step in this direction was taken a few
years ago, as it was conjectured that “the rate of entropy
production can be used as an intrinsically quantum test
of the chaotic versus regular nature of the evolution” [37].
The idea has been tested in some models [38]. In this sec-
tion we shall discuss and analyze the behavior of the field
entropy for the present model. Our intention here is to
show how the quantum field entropy and the populations
are influenced by different kinds of nonlinearities, so we
next present results that clearly show this influence. Ini-
tially we fix the number of the correlated two-mode co-
herent state at q = 4 and ζ = 10, to analyze the effects
resulting from variation in the nonlinearities of both the
bimodal field and the intensity coupling.

In Figure 1a we display the time evolution of the field
entropy as a function of the scaled time λt, of a three-
level atom interacting with two-mode pair coherent states
in the absence of both nonlinearities and detuning i.e.
(�(n1, n2) = 0, fi(ni) = 1, ∆ = 0). It is observed that the
maximum and minimum values of the field entropy are
achieved during the initial stage of the time evolution.
At later time the field and the atom are strongly entan-
gled. The probability amplitudes given in expressions (19)

Fig. 1. (a) The evolution of the field entropy SF as a func-
tion of the scaled time λt with q = 4, ζ = 10, �(n1, n2) = 0,
fi(n̂i) = 1 and ∆/λ = 0. (b) Atomic level occupation proba-
bilities, (sold line) the upper state P1(t), the first lower state
(doted line) P0(t) and the second lower state (doted-dashed
line) P2(t) as functions of the scaled time λt for the system
under consideration.

are evaluated numerically and the results given in Fig-
ure 1b. On the interval 0 ≤ λt ≤ 5 the Rabi oscillation in
the atomic level occupation probabilities almost collapse,
while on the interval 10 ≤ λt ≤ 30 one encounters two
well-separated revivals. The amplitude of the Rabi oscilla-
tions attains a maximum at the so-called revival times [35].
For longer times the entropy as well as the atomic level
occupation probabilities fluctuate in an irregular manner.
It is worth noting that the state into which the cavity
collapses due to a successful measurement of the atomic
state exhibits maximum entanglement regardless both of
the initial equal populations given to the two cavity modes
and the duration of interaction.

Figures 2 and 3 are representing different values of
the intensity coupling, where the values of the parameters
fi(ni) are equal to

√
ni, for Figures 2 and 1/

√
ni for Fig-

ure 3, and the other parameters have the same values as
in Figure 1. One observes that the entropy shows rapid
oscillations (see Fig. 2) but the situation is completely
changed when we consider f(ni) = 1/

√
ni, the entropy

has zero values in a regular manner at period ∼ π/
√

2.
The effect of the appearance of n has been compensated
for. This is particularly because of the nonlinear nature
of the coupling in this model which results in the Rabi
frequency being proportional to the photon number. In
the absence of the nonlinearities, and for zero detuning
the Rabi oscillation is given by Ωn =

√
2(n+ 1). The

spectrum of the Rabi frequencies is nonlinear in n. Let us
treat this frequency as a continuous quantity and expand
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Fig. 2. (a) The evolution of the field entropy SF as a func-
tion of the scaled time λt with q = 4, ζ = 10, �(n1, n2) = 0,
fi(n̂i) =

√
ni and ∆/λ = 0. (b) Atomic level occupation prob-

abilities, (sold line) the upper state P1(t), the first lower state
(doted line) P0(t) and the second lower state (doted-dashed
line) P2(t) as functions of the scaled time λt for the system
under consideration.

Fig. 3. (a) The evolution of the field entropy SF as a function
of the scaled time λt with q = 4, ζ = 10, �(n1, n2) = 0,
fi(n̂i) = 1/

√
ni, and ∆/λ = 0. (b) Atomic level occupation

probabilities, (sold line) the upper state P1(t), the first lower
state (doted line) P0(t) and the second lower state (doted-
dashed line) (P2(t) + 1) as functions of the scaled time λt for
the system under consideration.

the dispersion curve Ωn around the point n̄ = |ζ|2. Let us
write

Ωn = Ωn̄ +Ω
(1)
n̄ (n− n̄) +Ω

(2)
n̄ (n− n̄)2 + ..., (34)

where Ω(r)
n̄ = 1

k!
dkΩn

dnk

∣∣∣
n=n̄

. The first term of the Ωn ex-
pansion is responsible for rapid oscillations of the model
while the remaining terms are responsible for their enve-
lope. In general, if only the first-order derivative of such
an expansion were different from zero, the collapses and
revivals of the oscillations would be perfectly periodic (lin-
ear or harmonic approximation) which is the case for both
f(ni) =

√
ni or 1/

√
ni as well. If higher-order terms in Ωn

are nonzero, but the nonlinearity of the frequency spec-
trum is slight, they spread the revivals arising from the
linear expansion and, in particular, lead to their incom-
pleteness, overlapping and a ringing structure. In turn, if
the influence of the higher-order terms in Ωn is signifi-
cant, it may totally wash out collapses and revivals of the
model. Comparing the behavior in Figure 2, where we set
the intensity coupling constants f(ni) =

√
ni, with cases

considered in Figure 1, we may say that the effect of the
intensity coupling is rather different, where the oscillating
period for f(ni) = 1 is longer than that of f(ni) =

√
ni

case. Also, one can realize that, periodical changes always
occurring in the entropy as a common property in this
case. This should be expected as resultant of the existence
of the periodic functions in the expression of the entropy.

Now we will examine the precise role that the non-
linear medium (Kerr-type) actually plays in the entan-
glement degree. When the nonlinearity takes place and
starts to affect the system, we can easily realize a lot of
changes occurring in the entropy as well as in the atomic
occupation probabilities. For example we set R(n̂1, n̂2) =
χ1n1(n1 − 1) + χ2n2(n2 − 1), where χi, (i = 1, 2) (which
are related to the third-order nonlinear susceptibilities for
the processes of self-phase-modulation of the two modes).
In fact the optical Kerr effect is one of the most exten-
sively studied phenomenon in the field of nonlinear op-
tics because of its various applications [39–43]. In Fig-
ure 4, we set f(n̂i) = 1, then by taking χ1 = χ2 = χ
and χ/λ = 0.5, while the difference number of two-mode
photon q = 4 and ζ = 10, we show that a nonlinear
interaction of the Kerr-like medium with the field mode
leads to increasing values of the minimum entropy and
of the sustainment time of the maximum entropy. In this
case, the field and the atom almost retain a strong entan-
glement in the time evolution process. With the increase
of the nonlinear interaction of the Kerr-like medium with
field mode, the maximum value of the entropy becomes
less and less (i.e. the increasing of the nonlinear interac-
tion of the Kerr-like medium with field mode leads to a
decrease of the maximum value of the entanglement de-
gree). This means that with increasing the constant χ
there exists an enhancement of the energy exchange be-
tween atom and optical field. We find in particular that
the Kerr-like medium yields the superstructure of atomic
Rabi oscillation and the interaction intensity of atom-field
is non-monotonically dependent on the dispersive part of
the third-order nonlinearity of the Kerr-like medium.
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Fig. 4. (a) The evolution of the field entropy SF as a func-
tion of the scaled time λt with q = 4, ζ = 10, �(n1, n2) =
χ1n1(n1 − 1) + χ2n2(n2 − 1), (χ1 = χ2 = χ = 0.5), fi(n̂i) = 1,
and ∆/λ = 0. (b) Atomic level occupation probabilities, (sold
line) the upper state P1(t), the first lower state (doted line)
P0(t) and the second lower state (doted-dashed line) P2(t) as
functions of the scaled time λt for the system under consider-
ation.

Comparing the behavior in Figure 5 where f(ni) =√
ni and Figure 6 where f(ni) = 1/

√
ni in the presence of

the nonlinear medium χ/λ = 0.5, which implies that the
effects on the entropy of both specific intensity-dependent
nonlinear and the nonlinear medium can be counterbal-
anced in some special case. The result in Figure 6 is in
marked contrast to the situation of f(ni) = 1/

√
ni in

absence of the nonlinear medium, where the maximum
value of the entropy is decreased dramatically, also we
have shown here the periodic oscillations occur in all cases.
This difference reflects the various influences of intensity-
dependent media on the interaction between atom and
field. The evolution of the three-level atom is governed
by the collapse and revivals of the both slow and fast
oscillations. The atom and the field never stop exchanging
energy, so convergence to a final state does not take place.
In Figure 6, we note that the amplitude of the field entropy
decreases. It is evident that the field and the atom are
in pure states when the Kerr-like effect increase further.
This result corresponds to the fact that in the limit for the
very strong nonlinear interaction of the Kerr-like medium
with the field mode, the field and the atom are almost
decoupled, which preserves the field entropy’s tending to
zero. Also, from our further calculations, which are not
displayed here, we see how the field entropy and the atomic
occupation probabilities depend on the detuning param-
eters at a given time. By augmenting detuning param-
eter we bring about qualitative changes in the evolution.

Fig. 5. (a) The evolution of the field entropy SF as a func-
tion of the scaled time λt with q = 4, ζ = 10, �(n1, n2) =
χ1n1(n1−1)+χ2n2(n2−1), (χ1 = χ2 = χ = 0.5), fi(n̂i) =

√
ni

and ∆/λ = 0. (b) Atomic level occupation probabilities, (sold
line) the upper state P1(t), the first lower state (doted line)
P0(t) and the second lower state (doted-dashed line) P2(t) as
functions of the scaled time λt for the system under consider-
ation.

Fig. 6. (a) The evolution of the field entropy SF as a function
of the scaled time λt with q = 4, ζ = 10, �(n1, n2) = χ1n1(n1−
1) + χ2n2(n2 − 1), (χ1 = χ2 = χ = 0.5), fi(n̂i) = 1/

√
ni and

∆/λ = 0. (b) Atomic level occupation probabilities, (sold line)
the upper state P1(t), the first lower state (doted line) P0(t)
and the second lower state (doted-dashed line) P2(t) as func-
tions of the scaled time λt for the system under consideration.
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It is observed that the first maximum value of the field en-
tropy decreases, but the period of revivals becomes longer
and the time area of vibration of the entropy is com-
pressed. On the other hand, the effect of the detuning on
the oscillation frequency and on the time of the revivals af-
ter the first one do not seem regular. This means that the
dependence on the detuning can be rather complicated,
and further study is necessary before more definite con-
clusions can be made. One may eliminate adiabatically the
upper atomic level, and reduce the three-level system to an
effective two-level one. From this point of view, the transi-
tion of the electron can be considered as existing only be-
tween the states |b〉 and |c〉. The above analysis means that
by increasing the detuning the Kerr-like medium effect re-
sults in a peculiar phenomenon that the transition of an
electron between the |b〉 and |c〉 atomic states. This new ef-
fect may be interpreted as due to the dynamical Stark shift
induced by nonlinear interaction of Kerr-like medium [39].
To see this, we rewrite the generalized Rabi frequency of
the three level atom as Ωij(χ/∆) = βi(χ/∆) − βj(χ/∆),
i, j(i < j) = 1, 2, 3. For χ  ∆, one expand this ex-
pression as a parameter as a power series of χ/∆ as
Ωij(χ/∆) = Ωij(0) + (χ/∆)Ω\

ij(0) + 0(χ/∆)2, where

Ω
\
ij(0) = ∂Ωij(χ/∆)/∂(χ/∆). The term (χ/∆)Ω\

ij(0) is
seen to be the dynamical Stark shift, however, induced by
Kerr-like medium effect.

It may be worth pointing out that the quantum en-
tanglement in the present model arises from interaction
between the two subsystems and therefore depends on the
interaction strength between the two, in contrast to quan-
tum entanglement discussed in the context of quantum in-
formation theory which is traditionally based on Bell-type
bipartite spin-singlet states (for a recent review see [44]).
In this case, for the pure state density matrix associated
with a single Bell state, the conditional entropy is trivially
seen to be negative and hence the Bell state is super corre-
lated. A different type of entropic analysis based on Jaynes
maximum entropy principle for this system has been given
recently [45].

The generation of maximally entangled field state be-
tween two cavities such that if one cavity has one pho-
ton then the other will be in vacuum, the atom after its
interaction with the cavity fields, is required to be de-
tected in ground state |c〉 or |b〉. This leads to the con-
dition that probability amplitudes of the states |0, 1; b〉,
and |1, 0; c〉 are equal. The total probability of detect-
ing the atom in |b〉 and |c〉 states is determined as Pg =
1
2 (sin2 λ1µnt+ sin2 λ2µnt) [46]. This probability becomes
maximum when the time of interaction of atom with
mode A and mode B is mπ/2λ1µn and nπ/2λ2µn, respec-
tively (in this case µn = 1). Here, m and n are odd integer
numbers. Hence, in order to generate two mode entangle-
ment the time of interaction of the atom with the cavity
is odd integer multiple of half of the Rabi cycle. This en-
sures that the cavity will obtain one photon in either of
the two modes when atom is detected in ground state after
its propagation through the cavity. As a result the atom
leaves the cavity in upper state and develops an entangled
state between the two cavity modes. The interaction times

of the atom with the two modes of the cavity field would
be different because of the different coupling constants of
each mode of radiation field. These interaction times of
atom in the cavity can be controlled by using a velocity
selector before the cavity and then applying Stark field
adjustment so that atom becomes resonant with the cav-
ity field modes only for the suggested amount of time in
each mode of the cavity field.

We may prepare the initial state as the one in equa-
tion (9), but with n1 = 1 (the first cavity field has one
photon) and n2 = 0 (the second cavity field in the vac-
uum state). After having detected the atom in the internal
state, the resulting state will be

|ψ(0)〉 = γ1|1〉 ⊗ |0〉 ⊗ |b〉+ γ2|0〉 ⊗ |0〉 ⊗ |a〉
+ γ3|0〉 ⊗ |1〉 ⊗ |c〉· (35)

We can detect the atom in the |c〉 state and choose γ2 = 0
and adjust the time to get (|0〉 ⊗ |0〉 ± |1〉 ⊗ |1〉), or take
γ1 = 0 and adjust it to get (|0〉 ⊗ |1〉 ± |0〉 ⊗ |0〉), which
is also a Bell-type state involving the quantized cavity
fields. More general states could also be generated, de-
pending on the initial conditions. Note that entanglement
here involves states belonging to different kinds of phys-
ical systems (although both subspaces have infinite di-
mension), but because of their nature new possibilities
for quantum information processing might arise. In order
to realize the suggested scheme in laboratory experiment
within microwave region, we may consider slow Rb atoms
in higher Rydberg states which have life time of the or-
der of few milliseconds [47]. These slow atoms, initially
pumped to high Rydberg states, pass through a high-Q
superconducting cavity of dimension of a few centimeters
with a velocity of around 400 m/s [47–49]. The interaction
times of atom with cavities come out to be of the order of
few tens of microseconds which is far less than the cavity
life time. The high-Q cavities of life time of the order of
millisecond are being used in recent experiments [49]. The
interaction time of the atom with different cavities can be
controlled by using a velocity selector and applying Stark
field adjustment in different cavities in order to make the
atom resonant with the field for right amount of time.
As this entanglement remains only for the cavity life time
period so any application regarding this entangled state
should be accomplished during this period.

It is important moreover to underline that the suc-
cess of the procedure reported in this paper for generat-
ing maximally entangled bimodal cavity field having the
form (38), is strictly related to the capacity of prepar-
ing the atom-field system in the state expressed by equa-
tion (12). As far as the atomic initial state, it is well known
that the Ramsey zone method, currently used in labora-
tory for mixing two atomic states, is very efficient. On the
other hand, it is possible to prepare the cavity field in
an equally intensity bimodal Fock state, following, for ex-
ample, an experimental scheme very recently presented in
literature [50], it is shown that, taking into account impor-
tant technological limits of the apparatus currently used in
laboratory, the probability of realizing the state |n, n〉, de-
creases with nmaintaining however values of experimental
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interest in correspondence to n ∼ 10. It is important to ob-
serve, at this point, that, notwithstanding the high values
of the quality factor Q of the resonators today available,
it could be illegitimate to neglect the cavity losses when
n is too large. These considerations suggest that from an
experimental point of view it should be better to choose
initial conditions such that the number of photons con-
tained in both cavity modes at t = 0 does not exceed 10.

Here we may refer to an interesting work given in refer-
ence [51] where the authors considered a three-level atom
interacting with a single mode and presented a scheme for
preparing entangled coherent states based on the atom-
cavity mode Raman interaction. Furthermore, they dis-
cussed a method for generating multi-mode entangled
coherent states.

7 Conclusion

To summarize, we have discussed the interaction of a
three-level atom bimodal field system, taking into account
arbitrary forms of nonlinearities of both the field and the
intensity-dependent atom-field coupling. The work here
extends previous studies in this context [16,17,46,51,52].
Analytical expression for the density operator of the sys-
tem is derived. Whilst the model was quite general, we
have chosen intentionally to study specific kinds of non-
linearities of both the field and the intensity-dependent
atom-field coupling, for which the relevant experiments
are available, so as to make quantitative predictions. In
particular, we have explored the influence of the various
parameters of the system on the field entropy, entangle-
ment and the evolution of atomic occupation probabili-
ties. We have demonstrated that the entanglement degree
is extremely sensitive to different kinds of nonlinearities of
both the field and the intensity-dependent atom-field cou-
pling. We have shown numerically that the time evolution
of the quantum field entropy and atomic occupation prob-
abilities depend sensitively on the nonlinearities. We find
in particular that the nonlinear medium yields the super-
structure of atomic Rabi oscillation and the interaction
intensity of atom-field is non-monotonically dependent on
the coupling constant.

An idealized situation when the cavity losses are neg-
ligible is considered here. However, for the case of real ex-
periment the losses must be introduced. It can be expected
that for a non-ideal but high-quality cavity our results are
of relevance in the case the Hamiltonian is appropriate
for the experimental setup. We considered atomic occu-
pation probabilities and found that the phenomenon of
periodic collapse and revival occurs; it is however a short-
lived phenomenon due to the effects of nonlinearity. It is
found that entanglement is affected strongly when a non-
linear medium is taken into account in the presence of
the intensity coupling such that f(ni) = 1/

√
ni. When

the nonlinear interaction of the Kerr-type medium is very
strong, it leads to a decrease of the field entropy. For the
intensity-dependent atom-field coupling f(ni) =

√
ni the

entropy as well as the atomic occupation probabilities ex-
hibit strong regular oscillation.

We have shown that it is possible to generate Bell-
type states having rather simple initial state preparation.
To make the problem more realistic the atom decay and
cavity decay should be taken into account. We hope to
report on such issues in a forthcoming paper. Also, it is
interesting to point out that these results are quite gen-
eral and can be applied to other systems which involve
more atomic levels or more field modes to exhibit large
entanglement under certain conditions.
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